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Abstract. Diagonal matrix elements of pseudodifferential operators are needed in order to compute effective
Lagrangians and currents. For this purpose the method of symbols is often used, which however lacks mani-
fest covariance. In this work the method of covariant symbols, introduced by Pletnev and Banin, is extended
to curved space-time with arbitrary gauge and coordinate connections. For the Riemannian connection we
compute the covariant symbols corresponding to external fields, the covariant derivative and the Laplacian,
to fourth order in a covariant derivative expansion. This allows one to obtain the covariant symbol of gen-
eral operators to the same order. The procedure is illustrated by computing the diagonal matrix element of
a nontrivial operator to second order. Applications of the method are discussed.
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1 Introduction

As is known, the functional integral formulation of quan-
tum field theory depends on the computation of the par-
tition functional. To one loop this amounts to adding the
quadratic fluctuations above a classical solution. Typically

Z1-loop =

∫
Dψ(x) e−〈ψ|K̂|ψ〉 , (1)

where the quantum fluctuations are controlled by the dif-
ferential operator K̂. This operator may depend on all
kinds of external fields, and typically it will contain the
covariant derivative ∇µ (with all kinds of connections) as
well as other background fields, M(x), i.e. K̂ =K(∇,M).
Formally, the Gaussian integral gives the functional deter-
minant Det(K̂) raised to some power, which depends on
the type of fields (real or complex, bosonic or fermionic).
Thus, for the effective action,

Z = e−Γ , (2)

one formally obtains

Γ1-loop = cTr log(K̂) = c

∫
ddx
√
g tr

〈
x| log(K̂)|x

〉
. (3)

This brings in a pseudodifferential operator, namely,
log(K̂), and its kernel at coincident points. Unfortunately,
the logarithm does not define an ultraviolet convergent (or
even one-valued) operator for any physical space-time di-
mension, correspondingly the kernel of log(K̂) diverges at
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coincident points, as also does its trace. If the ζ-function
regularization is used [1–4], this introduces a new pseudo-
differential operator, the complex power of the fluctuation

operator, (K̂)s [5]. Its kernel 〈x|(K̂)s|y〉 is an analytic en-
tire function with respect to s provided the points x and y
are different. The diagonal matrix elements 〈x|(K̂)s|x〉 are
meromorphic functions of s, with a finite number of poles,
which depend on the order of K̂ and the space-time dimen-
sion, but they are analytic at s = 0. The computation of
other observables introduces further pseudodifferential op-
erators f̂ = f(∇,M) and their diagonal matrix elements.
For instance, for a gauge current

δΓ =

∫
ddx
√
g tr(Jµ(x)δAµ(x)) , (4)

with fluctuation operator of the Klein–Gordon type,
K̂ =−∇µ∇µ+M , at one loop one formally obtains

Jµ1-loop(x) =−c
〈
x|
{
∇µ, (K̂)−1

}
|x
〉
, (5)

and again some regularization procedure has to be used to
render the expression meaningful.
The main purpose of this work is of practical and

methodological character, namely, to address the compu-
tation of diagonal matrix elements of operators of the type
f̂ = f(∇,M). As we have just shown such problem is ubiq-
uitous in one-loop calculations in quantum field theory.
A more concrete goal is to extend methods existing for flat
space-time to curved space-time, the covariant derivative
carrying gauge and coordinate connections.
A useful technique when working with pseudodifferen-

tial operators is the method of symbols [4–7]. For an oper-
ator f̂ constructed with xµ and ∂µ the symbol is essentially
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the function f(x, p) such that f̂ = :f(x, ∂):, where the nor-
mal order stands for writing ∂µ at the right of x

µ. Obvi-
ously the symbol is closely related to the Wigner represen-
tation of operators [8] which is the basis of the phase space
approach to quantum mechanics [9], except that Weyl nor-
mal order [10] is used instead, so that :f(x, ∂): is hermitian.
As will be shown below, the symbol allows one to carry
out manipulations, typically expansions of various types,
and directly or indirectly it has been used extensively in
the computation of the one-loop effective action and re-
lated quantities, such as the heat kernel [11–16], both in
flat space-time [7, 17–19] and in curved space-time [20–31].
The mathematical aspects of the symbol in Riemannian
manifolds have been considered e.g. in [32]. The exten-
sion of the method of symbols to finite temperature field
theory (in the imaginary time formalism where space is
compactified to a circle) has been carried out in [33–36].
A further branch of mathematical physics where nowadays
the symbol and the Moyal product [37] (which provides the
symbol of the product of two operators) have proven use-
ful is in non-commutative quantum field theory [38–40],
where they play an important role in the construction of
non-commutative versions of existing theories.
In general, the symbol is not a covariant quantity (ei-

ther in the gauge or coordinate senses) since the prescrip-
tion ∂µ→ pµ is not covariant. Obviously, a naive covariant
prescription of the type ∇µ→ pµ would not define a faith-
ful representation of the pseudodifferential operator be-
cause, unlike pµ, ∇µ is a non-Abelian quantity. When the
symbol is used to compute a covariant quantity, such as
the effective action, covariance is recovered at the end of
the computation, but is not fully manifest in intermediate
steps. Actually the situation is not as bad as it seems (ex-
amples are given below) and it is usually not necessary to
go to the point of splitting ∇µ into ∂µ plus connections
(thus spoiling the geometrical meaning of the covariant
derivative, a quite bold step to take even in the simplest
computations, particularly in the coordinate sector), but
nevertheless, it is a more or less severe nuisance. A pos-
sible way out is to use “covariant gauges”, namely, Fock–
Schwinger [11, 41] in the gauge sector and Riemann normal
coordinates [42–44] in the coordinate sector [26]. In [45]
Pletnev and Banin proposed a new method for the gauge
sector in flat space-time which implements the previous
gauge fixing in a convenient way. In the present work we
name their construction covariant symbol of the pseudodif-
ferential operator. Whereas the ordinary symbol is a func-
tion of xµ and pµ, the covariant symbol is actually an oper-
ator, but multiplicative in x-space, and hence equivalent to
a function of xµ. Unlike the ordinary symbol, however, the
covariant symbol is non-multiplicative with respect to pµ,
that is, it contains ∂/∂pµ. Eliminating ∇µ at the price of
introducing ∂/∂pµ is in principle a net gain, though, since
one is trading a non-Abelian quantity for an Abelian one.
Besides being manifestly gauge covariant, the covariant
symbol has the interesting property that it is a representa-
tion (in the technical sense of algebra homomorphism) of
the original operator. E.g., if f is the covariant symbol f̂ ,
log(f) is the covariant symbol of log(f̂ ). No Moyal product
is required to compute the covariant symbol of the product

of two operators. Unfortunately there are also drawbacks:
in general, the covariant symbol cannot be computed in
closed form even for differential operators and thus expan-
sions of some type are usually required. In practice, this
is not a serious disadvantage since even the ordinary sym-
bol of non-differential operators is not obtainable in closed
form. In addition to manifest covariance, the great virtue
of the covariant symbol is that, due to their homomorph-
ism property, one needs to work them out for the building
blocks only, that is, the external fields M and the covari-
ant derivative∇µ, and this can be done once and for all. At
present, the method of covariant symbols has been success-
fully used in several problems [45–49].
In this work we take a step forward and extend the

method of covariant symbols to the case of curved space-
time.1 The main issue now is to retain manifest coordinate
covariance, in addition to gauge covariance. In fact, we find
that working with the full covariant derivative as a whole
(i.e., all connections included), as advocated for instance
in [16], is the cleanest way to proceed both conceptually
and computationally. To some extent the construction car-
ried out in the flat space-time case can be adapted to the
curved case. However, as is known, there are important
technical differences between gauge and coordinate cases.
All differences stem from the fact that the covariant deriva-
tive always adds a new coordinate index, and thus a quan-
tityX and its covariant derivativeXµ =∇µX fall in differ-
ent representations of the group of diffeomorphisms. This
implies, for instance, that ∇ν acting on Xµ will contain
a further term Γλνµ not present in its action on X. This is

not so in the purely gauge case. When these facts are prop-
erly taken into account, and with the help of Riemann nor-
mal coordinates in an intermediate step, the construction
in [45] can be extended to the general case (i.e., coordinate
plus gauge symmetries). The construction holds for com-
pletely general connections in the world sector2 (including
e.g. torsion).
As we said, the covariant symbol can seldom be ob-

tained in closed form. A natural expansion in this con-
text is that in the number of covariant derivatives (also
known as adiabatic expansion), which permits a system-
atic evaluation of the covariant symbol. For an operator
f̂ = f(∇,M) it is sufficient to compute the covariant sym-
bols of∇µ andM . We do this explicitly to second order for
a generic connection, and to fourth order for the particular
case of the Riemannian connection in the world sector (and
arbitrary connection in the gauge sector). The Laplacian
is computed to the same order in the derivative expan-
sion. The computation provides the covariant symbols in
terms of elementary operators classified by their number

1 In their original work [45] Pletnev and Banin proposed
a formula including the Riemannian connection, which, how-
ever, has not yet been used in any actual application known to
us. Our own proposal is unrelated to that one.
2 In this work we will use the label world interchangeably
with coordinate or space-time in expressions like “world ten-
sor”, “world index”, etc, to refer to properties tied to indices
µ, ν, . . . , associated to natural bases, ∂/∂xµ, of the tangent
space of the space-time manifold.
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of derivatives. Such operators are just all possible local co-
variant operators constructed with M , the field strength
tensor and their covariant derivatives. There is a number
of similarities between the covariant derivative expansion
and the standard heat kernel expansion. Both are expected
to be asymptotic at best. They are local and blind to
global properties of the space-time manifold. In both cases
all possible local covariant operators are expected to ap-
pear with some universal coefficients which are rational
numbers (to be determined by the computation). In the
standard heat kernel expansion the operators are classified
by their (mass) dimension. Because ∇µ has dimension 1,
the heat kernel expansion can be obtained a posteriori by
means of a subsequent reexpansion of the covariant deriva-
tive expansion [19].
The paper is organized as follows. In Sect. 2 we consider

flat space-time and revise the construction of ordinary and
covariant symbols in that case, as well as their use for the
computation of diagonalmatrix elements. In Sect. 3 we dis-
cuss the construction of ordinary symbols in curved space-
time, highlighting the subtleties introduced by the pres-
ence of curvature. In Sect. 4 we extend covariant symbols
to curved space-time, discuss their properties and compute
them to second order in the derivative expansion for a gen-
eral gauge and world connection. Section 5 is devoted to set
up a systematic computation of the covariant symbols, and
they are computed to fourth order for Riemannian con-
nection. In Sect. 6 we illustrate the ideas and techniques
involved by using the covariant symbols to explicitly com-
pute the diagonal matrix elements of a concrete operator to
second order. Finally, in Sect. 7 we present our conclusions.
In Appendix A we summarize some of the conventions used
in the work. In Appendix B we work out the same cal-
culation as in Sect. 6 but using the method of (ordinary)
symbols. In Appendix C it is shown how to reduce momen-
tum integrations in curved space-time to those of the flat
case.

2 Symbols and covariant symbols
in flat space-time

In this section we consider a d-dimensional flat space-time.
The operators act on states ψ(x) which can be thought
of as “matter fields”, as opposed to background exter-
nal fields appearing in the operators. In addition to their
space-time dependence, the matter fields may carry in-
ternal indices (however, for simplicity, we disregard pos-
sible world indices in the fields throughout this section).
For concreteness, in what follows, we will assume that the
states are vectors in the fundamental representation of
some internal symmetry gauge group, and that the oper-
ators map them into the same gauge representation. The
scalar product takes the form 〈ψ1|ψ2〉=

∫
ddxψ†1(x)ψ2(x).

The pseudodifferential operators to be considered are of
the form f̂ = f(D,M). They are constructed algebraically3

3 This means that f̂ has the same algebraic properties as
a sum of products of M ’s and D’s weighted with c-number co-
efficients, e.g., Dµ log(D

2+M).

out of the covariant derivative Dµ and one or more mul-
tiplicative operators which are collectively denoted by M .
Such M are just equivalent to matrix-valued (in internal
space) functions of x acting as M(x)ψ(x). The covariant
derivative is of the form Dµ = ∂µ+Aµ(x), the gauge con-
nection Aµ(x) being also a matrix-valued function.
Under a gauge transformation ψ(x)→ Ω−1g (x)ψ(x),

where Ωg is a multiplicative operator and Ωg(x) a matrix
in the internal space. CorrespondinglyM ,Dµ and f̂ trans-
form under a similarity transformation

M →Ω−1g MΩg ,

Dµ→Ω
−1
g DµΩg , (6)

Aµ→Ω
−1
g [∂µ, Ωg]+Ω

−1
g AµΩg ,

f̂ →Ω−1g f̂ Ωg .

(The last equality being a consequence of the fact that f̂ is
algebraically a function ofM andDµ.)
We can consider a basis of states of the form |x, a〉

with spatial part equal to a Dirac delta located at x and
a being a gauge index, and the corresponding dual basis,
〈x, a|y, b〉 = δ(x− y)δab . In what follows we will refer to
diagonal matrix elements of an operator f̂ to mean those
matrix elements of the type 〈x, a|f̂ |x, b〉 (a and b not nec-
essarily equal). For convenience, we will occasionally write
the same matrix element omitting the internal indices, i.e.
〈x|f̂ |x〉, and using a matrix notation in internal space. The
diagonal matrix element is gauge covariant,

〈x|f̂ |x〉 →Ω−1g (x)〈x|f̂ |x〉Ωg(x) , (7)

due to Ωg|x〉 =Ωg(x)|x〉. Of course, this is somewhat for-
mal as 〈x|f̂ |x〉 does not exist for many otherwise decent
operators due to ultraviolet divergences in taking the diag-
onal limit. Throughout this work we will assume that the
function f is sufficiently convergent so that the matrix
element exists, or that a gauge invariant prescription, such
as dimensional renormalization or ζ-function regulariza-
tion has been used. Such a prescription always exists for
symmetries as gauge invariance, which correspond to sim-
ilarity transformations of f̂ .

2.1 Symbol of an operator

In order to compute 〈x|f̂ |x〉, a standard technique is the
method of symbols [4]. Let |0〉 denote the wavefunction
equal to one for all x, that is

〈x, a|0, b〉= δab , |0, a〉=

∫
ddx|x, a〉 . (8)

Then, for a given point x0,

〈x0|f(D,M)|x0〉=

∫
ddy δ(y−x0)〈x0|f(D,M)|y〉

=

∫
ddy

ddp

(2π)d
ep(y−x0)〈x0|f(D,M)|y〉
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=

∫
ddy

ddp

(2π)d
〈x0|e

−pxf(D,M)epx|y〉

=

∫
ddp

(2π)d
〈x0|e

−pxf(D,M)epx|0〉

=

∫
ddp

(2π)d
〈x0|f(D+p,M)|0〉 . (9)

In the second line py := pµy
µ. Throughout this work4 we

will use an imaginary momentum variable pµ = ipµ (pµ
real) to save unnecessary i factors; however, ddp := ddp is
the standard integration in Rd. In the third line xµ is the
position operator. In the fourth line we use the identity (8).
Finally, in the last line we use the properties

e−pxM(x)epx =M(x) , e−px∂µe
px = ∂µ+pµ . (10)

The quantity 〈x|f(D+p,M)|0〉 is known as the symbol
of the pseudodifferential operator f̂ . It is a matrix-valued
function of x and p. For any multiplicative operator, the
property

〈x0|h(x)|0〉= h(x0) (11)

implies that the symbol of the operatorM is just the func-
tion M(x). More generally, because ∂µ|0〉= 0, the symbol
of f(D,M) can be obtained by dragging the ∂µ to the right
and replacing them by pµ.
The matrix element 〈x|f(D,M)|x〉 is potentially ultra-

violet divergent. Using (9) the divergence is now controlled
by the momentum integration and one can make expan-
sions or other manipulations using the symbol of the op-
erator. On the other hand, 〈x|f(D,M)|x〉 is manifestly
gauge covariant (cf. (7)) but the symbol is not, in gen-
eral, due to the non-covariance of |0〉. This implies that
explicit gauge covariance in (9) is only recovered after mo-
mentum integration, but not in intermediate steps. Since
this is an important point let us dwell a bit on it. Clearly,
if an operator ĥ is both covariant and multiplicative, the
matrix element 〈x|ĥ|0〉 will also be covariant5. For in-
stance, 〈x|Dµ|0〉=Aµ(x) (not covariant) whereas the ma-
trix element 〈x| |0〉 of the multiplicative operator Fµν :=
[Dµ, Dµ] is just Fµν(x) = ∂µAν −∂νAµ+[Aµ, Aν ] (covari-
ant). So the lack of covariance of the symbol stems from the
fact that the operator f(D+p,M) (although covariant) is
not multiplicative. On the other hand, let

f̂ ′ :=

∫
ddp

(2π)d
f(D+p,M) , (12)

so that (9) becomes

〈x0|f̂ |x0〉= 〈x0|f̂
′|0〉 . (13)

4 Our notational conventions are summarized in Appendix A.
5 Indeed, 〈x|ĥ|0〉 → 〈x|Ω−1g ĥΩg|0〉 = Ω

−1
g (x)ĥ(x)Ωg(x) =

Ω−1g (x)〈x|ĥ|0〉Ωg(x), since Ω
−1
g ĥΩg is also a multiplicative

operator.

The operator f̂ ′ is multiplicative (in addition to covariant).
This can be seen as follows. For any (imaginary) constant
c-number aµ

e−axf̂ ′eax =

∫
ddp

(2π)d
f(D+p+a,M) = f̂ ′ , (14)

and this implies that f̂ ′ is multiplicative. The operation
in (12) projects the multiplicative component of f̂ . An-
other observation is that, as can be seen from (14), an op-
erator is multiplicative if and only if it is invariant under
the replacement Dµ→Dµ+aµ, where aµ is constant c-
number, and in turn, this is true if and only if allDµ appear
only in the form [Dµ, ]. Some of these arguments need to be
modified in the curved case (see e.g. the discussion of Z0µν
in (26)).
A standard technique for using the symbol in the com-

putation of diagonal matrix elements of concrete opera-
tors (e.g. the heat kernel) is as follows: f(D+p,M) is ex-
panded in powers of Dµ and M . Each term so obtained
is worked out by dragging the Dµ to the right (or to the
left) producing commutators of the type [Dµ, ], which are
gauge covariant and multiplicative. At the end, there will
be two type of summands, namely, the following. i) We
have those where all Dµ are inside commutators. These
are multiplicative and so give gauge covariant contribu-
tions to the symbol. ii) There are summands where the
Dµ at the right cannot be arranged in commutators. These
are non-multiplicative and break gauge covariance of the
symbol. From the previous discussion it follows that such
terms cancel after momentum integration and the surviv-
ing terms yield a covariant diagonal matrix element.
The method just described is illustrated in Appendix B

for the more involved case of curved space-time.6

2.2 Covariant symbol

To achieve manifest gauge invariance prior to momentum
integration in (9), one can choose to work in the covari-
ant Fock–Schwinger gauge referred to the point x0. An
equivalent but more convenient procedure was devised by
Pletnev and Banin [45] who introduced what we will call
the (gauge) covariant symbol of an operator. This is defined
as follows:

f = e−∂pDe−pxf̂epxe∂pD , (15)

where ∂pD = ∂
µ
pDµ and ∂

µ
p = ∂/∂pµ. (Note that ∂pD =

D∂p just means the product of two operators; no derivative
of one on the other is implied.) Therefore, while the original
operator f̂ acts on functions ψ(x), its covariant symbol f
is an operator on functions ψ(x, p). Key properties of the
covariant symbol are i) it is a multiplicative operator in x

6 To revert the calculation in Appendix B to the flat space-
time case amounts to replace ∇µ with Dµ, gµν with δµν , and
to set to zero all pµν··· (having two or more indices) as well as
all Riemann tensors.
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space, ii) it is gauge covariant and iii) it is related to the
original operator by a similarity transformation.
Property iii) is obvious from its definition. ii) is also

clear, since f̂ , xµ, pµ, ∂
µ
p , and Dµ are all gauge covariant.

Property i) holds provided the original operator f̂ does not
contain pµ and means that in the covariant symbol all ∂

x
µ

appear in commutators only. The multiplicative property
is equivalent to the statement [xµ, f ] = 0. That this is the
case can be verified directly from the definition. Alterna-

tively, using the property ∂
µ

p = x
µ, which is easily verified,

one has

[
xµ, f

]
=
[
∂
µ

p , f
]
=
[
∂µp , f̂

]
= 0 . (16)

In the second equality we have used (iii). The multiplica-
tive property of the covariant symbol plays an important
role in what follows.
The covariant symbol can be used to compute the diag-

onal matrix element:

〈
x0|f̂ |x0

〉
=

∫
ddp

(2π)d

〈
x0|e

−pxf̂epx|0
〉

=

∫
ddp

(2π)d

〈
x0|e

−∂pDe−pxf̂epxe∂pD|0
〉

=

∫
ddp

(2π)d
f(x0) . (17)

The second equality follows from noting that ∂µp at the
right vanishes (since it is acting on a p-independent wave-
function in (x, p) space). Likewise, ∂µp at the left vanishes
due to integration by parts.7 In the last equality we have
used that the covariant symbol is multiplicative to write

f(x0) instead of the matrix element 〈x0|f |0〉.
As we can see from the properties i-iii), the mapping

f̂ → f really defines a representation of the operators f̂ in
x-space in terms of multiplicative operators (with respect
to x) in (x, p)-space, which is consistent with gauge covari-
ance. A further property is that the covariant symbol pre-
serves the hermiticity properties of the original operator.
Because the covariant symbol is a representation (i.e.

an algebra homomorphism) one has e.g.

f(D,M) = f(D,M) ,

Fµν = [Dµ, Dν ] ,

[Dµ,M ] = [Dµ,M ] , (18)

and so on. Using the definition (15), the basic operatorsDµ
and M can be readily computed in terms of a covariant

7 A more precise form of (17) would be

〈
x|f̂ |x

〉
=

∫
ddp

(2π)d
〈
x|
〈
p|f |0

〉
|0p
〉
=
〈
x|
〈
0p|f |0

〉
|0p
〉
,

where |0p〉 stands for the unit wavefunction in p space. The
statement is then e∂pD|0p〉= |0p〉 and 〈0p|e

−∂pD = 〈0p|.

derivative expansion [45]

M = e−[∂pD, ]M

=M −Mµ ∂
µ
p +
1

2!
Mνµ ∂

ν
p ∂
µ
p −
1

3!
Mανµ ∂

α
p ∂
ν
p ∂
µ
p + · · · ,

Dλ = e
−[∂pD, ](Dλ+pλ)

= pλ−
1

2!
Fµλ ∂

µ
p +
2

3!
Fνµλ ∂

ν
p ∂
µ
p −
3

4!
Fανµλ ∂

α
p ∂
ν
p ∂
µ
p

+ · · · (19)

In writing these formulas we have denoted the derivatives
of M and Fµν by introducing the convention [Dµ, XI ] =
XµI , i.e.,

[Dµ, Xα1···αn ] =Xµα1···αn . (20)

As is readily verified, the expansions in (19) are consistent
with the last two equations in (18). (Fµν follows the same
formula asM since the latter only assumesM to be a mul-
tiplicative operator.)
As a further convention, we will exploit the fact that the

derivatives ∂µp commute and so all their indices are sym-
metrized, to use a single symbol s for all of them, that is, we
will often write

M =M −Ms ∂
s
p +
1

2!
Mss (∂

s
p )
2−
1

3!
Msss (∂

s
p)
3+ · · · ,

Dλ = pλ−
1

2!
Fsλ ∂

s
p +
2

3!
Fssλ (∂

s
p)
2−
3

4!
Fsssλ (∂

s
p)
3+ · · ·

(21)

The use of covariant symbols to compute diagonal ma-
trix elements is illustrated in Sect. 6 for curved space-time.
Since it is easy to reduce that calculation to the simpler
case of flat space-time (see footnote 6) we do give further
examples here.
Note that the covariant symbol method is compatible

with derivative expansions (see [48, 50] for strict deriva-
tive expansions of the effective action functional of Dirac
fermions using this method). Such expansions are expected
to be asymptotic in general.
Another comment has to do with momentum space

integration by parts. Formally, f(D+ p,M) and f =
e−∂pDf(D+p,M)e∂pD would differ by terms with ∂p, im-
plying that the difference should vanish on |0p〉 or 〈0p| (see
footnote 7). This formal argument is correct for sufficiently
well behaved operators in the ultraviolet, e.g. M , but not
for Dµ in (21) (see also ∇µ∇µ(2) in (112)). Of course, it
is never necessary to take diagonal matrix elements of di-
vergent operators (without some regularization to make
them convergent). The homomorphism property implies
that Dλ provides the suitable momentum dependence to
give the correct result when used as part of an ultraviolet
convergent operator.
To summarize this section, the ordinary symbols are

representations of pseudodifferential operators in terms of
functions of x and p which are matrix-valued in internal
space and they are not gauge covariant. The representation
introduced by Pletnev and Banin in flat space-time, on the
other hand, is in terms of operators which are multiplica-
tive with respect to x and so equivalent to functions. In
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this sense they are similar to the ordinary symbols (which
also remain operators in internal space). They are covari-
ant and enjoy the homomorphism property, at the price
of being non-multiplicative in p space. Both ordinary and
covariant symbols provide diagonal matrix elements upon
integration over p.

3 Symbols in curved space-time

3.1 General considerations

The method of symbols can be extended to curved space-
time. The main issue now is to preserve both gauge covari-
ance and coordinate or world8 covariance. The space-times
we consider may have Euclidean or Minkowskian signa-
tures. We will treat the two cases simultaneously since
there is no formal difference for our purposes. We will of-
ten refer to the Riemannian connection to mean the unique
torsionless metric preserving connection, regardless of the
signature of the metric.
The pseudodifferential operator is now of the form f̂ =

f(∇,M) where∇µ is the covariant derivative and includes
connections for the parallel transport of all indices: world
and internal indices. The latter include gauge, Lorentz
frame, Dirac indices in the case of fermions, and so on.9 In
what follows we use indifferently an “internal” or “gauge”
index to mean any kind of internal index. The matter fields
ψ(x) may contain internal indices as well as world indices.
Likewise, the external fieldsM may also contain all kind of
indices and act as multiplicative operators with respect to
x. The metric gµν(x) is an example of such a field.
We do not assume that f(∇,M) should be a world

scalar (cf. Sect. 6 for an example). As a consequence f̂ may
connect different diffeomorphism representations. The rea-
son for this generality is that there is no net gain in re-
stricting oneself to the equal representation case. This is
because we need to consider covariant symbols not only of
the final operator f̂ but also of ∇µ as a building block and
∇µ always connects different tensor representations. This
is an important difference with the gauge case where one
can work consistently viewing all operators as matrices in
internal space.10 Of course, it would be pointless to try to

8 See footnote 2.
9 We are following the approach found for instance in [16]. In
this approach, if eaµ is the tetrad field, the connections on the
indices µ and a are such that ∇νe

a
µ = 0; likewise for the Dirac

gammas ∇µγ
ν = 0, with a suitable connection acting on the

Dirac indices. This convention is not universally adopted. For
instance, in [51]∇νe

a
µ would only include the connection for the

world index while Dνe
a
µ would only include the connection for

the tetrad index.
10 In the gauge case (and flat space-time), if ψ is a gauge vec-
tor Dµψ is again a gauge vector and so in a second derivative
DνDµψ,Dν would still be “the same operator” ∂ν+Aν . In the
general covariant case (and gauge singlet), if φ is a world scalar,
∇µφ = ∂µφ is a world vector and ∇ν “acts differently” on it,
namely, as ∇ν = ∂ν −Γν (Γν being a matrix on world indices

erase the difference between gauge and coordinate cases
using a tetrad, e.g. Da = e

µ
a∇µ [52] since, although Da is

a world scalar, it connects now different internal represen-
tations (namely, with respect to the new internal structure
introduced by the Lorentz index a).
For states in equal representations the scalar product is

〈ψ1|ψ2〉=

∫
ddx

√
g(x)ψ†1(x)ψ2(x) , (22)

g(x) denoting |det gµν |. As usual the scalar product has
been defined so that it is coordinate invariant, although
metric dependent. (Note however that, as shown below,
the construction of the covariant symbols themselves do
not require a metric to be defined.) For states in differ-
ent representations the scalar product vanishes. An active
world (or coordinate, or diffeomorphism) transformation,
xµ→ x′µ(x), defines a corresponding operator on states
ψ→ Ω̂−1w ψ, which takes the form

ψ(x)→
(
Ω̂−1w ψ

)
(x) = ψ (x′(x)) (23)

for a scalar,

ψµ(x)→
∂x′α

∂xµ
ψα (x

′(x)) (24)

on covariant world vectors, and so on.
As in the flat case we will use a basis of the tensor prod-

uct type, with states |x0, a, w〉 located at x0 (wavefunction
δ(x−x0)/

√
g(x)), a being a gauge index and w a set of

world indices (empty for world scalar states), with dual
basis 〈x, a, w|y, b, w′〉 = δab δ

w
w′δ(x−y)/

√
g(x). The metric

in the space-time factor of the basis states is introduced
so that they are world scalars, and similarly for the scalar
product.
Once again we want to evaluate diagonal (in x) matrix

elements 〈x, a, w|f̂ |x, b, w′〉. For short we will often write
just 〈x|f̂ |x〉; however, one should keep in mind the pres-
ence of world and internal indices since they determine
how the covariant derivative acts. In particular, the opera-
tor f̂ should connect the in representation (b, w′) with the
out representation (a,w), so that 〈ψ1|f̂ |ψ2〉 is a gauge and
world singlet.
As in the purely gauge case, we can regard the matrix

element 〈x|f(∇,M)|x〉 as a (gauge and world) covariant
function of x which takes values on operators acting on in-
ternal and world indices. And in turn this can be viewed
as equivalent to a covariant multiplicative operator (in the
purely gauge case, such a multiplicative operator is f̂ ′ in-
troduced in (12)).
Because multiplicative operators play an important

role in what follows let us define them more precisely.
A c-number multiplicative operator, φ̂, is one that acts in
the form

φ̂|x, a, w〉= φ(x)|x, a, w〉 , (25)

(Γν)α
β = Γβνα). The point is, of course, that due to its geomet-

rical meaning (through the Leibnitz rule), ∇µ acts consistently
at each place (i.e. using the proper connection), and there is no
need to worry about such details.
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φ(x) being a fixed complex function. Such an operator is a
gauge singlet and a world scalar. Now, by definition a mul-
tiplicative operator is one that commutes with all c-number
multiplicative operators. A multiplicative operator is diag-
onal in x but in general non-diagonal with respect to all
other degrees of freedom. In commutators, the c-number
multiplicative operators are blind to those degrees of free-
dom but sensible to derivatives with respect to x. Here we
can see a difference between the purely gauge case and the
general case (gauge plus world degrees of freedom). In the
flat case, [Dµ, Dν ] and [Dµ,Q], with Q multiplicative, are
multiplicative operators, as is easily verified. This property
is lost when a world connection is included, i.e. for∇µ. For
a generic world connection, the operator

Z0µν := [∇µ,∇ν ] , (26)

is not multiplicative, since acting on a world scalar and
gauge singlet state φ(x), it gives 11

[∇µ,∇ν ]φ=−T
λ

µν ∇λφ=−T
λ

µν

∂φ

∂xλ
, (27)

being T λ
µν the torsion. (Equivalently, [[∇µ,∇ν ], φ̂]

=−T λ
µν [∇λ, φ̂], in terms of c-number multiplicative oper-

ators.) The result depends on derivatives of φ and so such
Z0µν is not a multiplicative operator in the presence of tor-
sion. A remedy is to introduce the new operator

Zµν := [∇µ,∇ν ]+
1

2

{
∇λ, T

λ
µν

}
, (28)

({ , } denotes anticommutator) which is multiplicative, as
is readily verified. It coincides with Z0µν for a torsionless

connection such as the Levi-Civita or Riemannian connec-
tion (in the world sector). Nevertheless, [∇α, Zµν ] is again
non-multiplicative (even for the Riemannian connection).
In addition, at variance with Fµν of the flat case, Zµν will
not commute with the momentum pµ (to be introduced
subsequently, similar to the flat case). This is because Zµν
acts on world indices

[Zµν , pλ] =−R
σ

µν λ pσ . (29)

(This formula holds for any world connection.) As noted
previously, the difference between Dµ and∇µ is due to the
fact that ∇µ acts on world indices but also adds world in-
dices.
Because there are several types of quantities to be con-

sidered, we will introduce the following notation: the more
general quantities or objects (such as operators, wavefunc-
tions, matrix elements, etc) to be considered in this section
belong to the class

C(x,∇, Z,W, I, p) . (30)

11 Our conventions are such that, for a world vector gauge
singlet V λ,

[∇µ,∇ν ]V λ=+R λ
µν σV

σ−T σ
µν ∇σV

λ ,

Rµν :=R
λ

λµ ν , R :=R
λ
λ .

The presence of the label x indicates that the quantity in
question may depend on xµ. Likewise, the label ∇ denotes
that the object may be non-multiplicative in x space. Z
means that it may contain Zµν or other multiplicative op-
erators that act on world indices. W indicates that it may
contain world indices, I that they may contain internal (or
gauge, or bundle) indices. Finally, p means that it may de-
pend on pµ.
On the other hand, the class

C(x,∇, Z,W, I, p) , (31)

or simply C(∇, I), will indicate quantities which are multi-
plicative in x space [do not contain “free”∇µ] (denoted∇)
and are gauge singlets [do not contain internal indices] (de-
noted I), and similarly for other underlined labels. Thus,
for instance, pµ is in class C(∇, Z, I), the operators M in
f(∇,M) are in class C(∇, Z, p), and Zµν is in class C(∇, p)
(while Z0µν ∈ C(p) for a world connection with torsion). c-
number multiplicative operators are in C(∇, Z, I,W ). Mul-
tiplicative operators are in C(∇).

3.2 Diagonal matrix elements

To implement the method of symbols as for the flat case, we
proceed similarly to (9), starting with the diagonal matrix
element

〈
x0|f̂ |x0

〉
=

1√
g(x0)

∫
ddx1δ(x1−x0)

×〈x0|f(∇,M)|x1〉
√
g(x1)

=
1√
g(x0)

∫
ddx1

ddp

(2π)d
ep(x1−x0)

×〈x0|f(∇,M)|x1〉
√
g(x1) . (32)

The matrix element is independent of the coordinate sys-
tem, but the symbol is not. So we will pick a certain ref-
erence coordinate system (RCS) and denote its coordinates
by ξA(x), A= 1, . . . , d. These are d world scalar functions;
furthermore, we set to zero the connection associated to
the indices A (recall that ∇µ is defined acting on all in-
dices with the appropriate connection). We will reserve the
symbol xµ to denote an arbitrary coordinate system. Then

∇µξ
A =
∂ξA

∂xµ
=: tAµ (x) . (33)

These are world vector. Let us also introduce the dual con-
travariant world vectors

tµA(x) :=
∂xµ

∂ξA
, (34)

such that

tAµ t
µ
B = δ

A
B , t

µ
A t
A
ν = δ

µ
ν . (35)

Using in (32) the RCS, if ξA0 , ξ
A
1 , and g

(ξ)(x), denote, re-
spectively, the coordinates of the point x0 and x1, and the
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determinant of the metric in the RCS, we find

〈
x0|f̂ |x0

〉
=

1√
g(ξ)(x0)

∫
ddξ1

ddpA
(2π)d

epA(ξ
A
1 −ξ

A
0 )

×〈x0|f(∇,M)|x1〉
√
g(ξ)(x1) . (36)

The momentum integration variables pA are d c-number
and space-time constant quantities, pA ∈ C(x,∇, Z,W,
I, p).
It is convenient to work in an arbitrary coordinate sys-

tem. To this end, let us define the world vector fields

pµ = t
A
µ pA , Xµ = tµAξ

A . (37)

The c-number function Φ = pAξ
A can also be written as

pµX
µ, and moreover

pµ =∇µΦ . (38)

We can write

〈
x0|f̂ |x0

〉
=

1√
g(ξ)(x0)

∫
ddx1

ddpA
(2π)d

epµ(X
µ
1−X

µ
0 )

×〈x0|f(∇,M)|x1〉
√
g(x1) . (39)

Now, pµX
µ being a c-number multiplicative operator, we

can apply (25) to write

〈
x0|f̂ |x0

〉
=

1√
g(ξ)(x0)

∫
ddx1

ddpA
(2π)d

×
〈
x0|e

−pXf(∇,M)epX |x1
〉√
g(x1) .

(40)

Introducing now the space-time constant states |0, a, w〉,
which lie in the class C(x,∇, Z, p),

〈x, a, w|0, b, w′〉= δab δ
w
w′ ,

|0, a, w〉=

∫
ddx

√
g(x)|x, a, w〉 (41)

yields

〈
x0|f̂ |x0

〉
=

1√
g(ξ)(x0)

∫
ddpA
(2π)d

〈
x0|e

−pXf(∇,M)epX |0
〉

=
1√
g(ξ)(x0)

∫
ddpA
(2π)d

〈x0|f(∇+p,M)|0〉 ,

(42)

where we have used the identity (understood as a product
of three operators)

e−pX∇µe
pX =∇µ+pµ . (43)

The quantity 〈x0|f(∇+p,M)|0〉 is now the symbol of f̂
at x0. Again it is not gauge covariant, since under a local
gauge transformation, Ωg(x), |0〉 stops being space-time

constant. For a similar reason, it is not world covariant
under Ω̂w, unless |0〉 is a world scalar. (However, as in
the gauge case, covariance is recovered for matrix elements
〈x0| |0〉 of multiplicative operators.) In addition, the sym-
bol depends on the choice of RCS through pµ and t

A
µ . pµ

is the vector field which happens to take constant compo-
nents pA in the RCS, and similarlyX

µ has components ξA

precisely in that coordinate system. Such RCS dependence
cancels after momentum integration, as 〈x0|f(∇,M)|x0〉 is
gauge and coordinate covariant. As in the flat space-time
case (42) can also be written as

〈x0|f̂ |x0〉= 〈x0|f̂
′|0〉 , (44)

with

f̂ ′ :=
1√
g(ξ)(x)

∫
ddpA
(2π)d

f(∇+p,M) (45)

(g(ξ)(x) being a c-number multiplicative operator here).
The operator f̂ ′ is multiplicative, formally independent
of the in and out state spaces, and gauge and world co-
variant. Furthermore, it is RCS independent; the RCS de-
pendence of the momentum integral through the vector
field tAµ in pµ exactly cancels with the prefactor 1/

√
g(ξ)

(cf. Appendix C). As the scalar product itself, f̂ ′ is metric
dependent.
As in the flat case, we can work out f(∇+ p,M) by

dragging ∇µ to the right.
12 A very important difference

with the flat case is that ∇µ and pν no longer commute.
Their commutator is just the covariant derivative of pµ,

[∇µ, pν ] =
[
∇µ, t

A
ν

]
pA = t

A
µνpA = t

λ
A t
A
µν pλ (46)

(tAµν being the covariant derivative of t
A
ν , according to our

convention). The same computation in the RCS system,
where pµ equals pA (and so ∂

x
µpν = 0), gives

[∇µ, pν ] =−Γ
(ξ)λ
µνpλ . (47)

In an arbitrary coordinate system this becomes

[∇µ, pν ] =−P
λ
µ νpλ , (48)

where P λµ ν is the world tensor with components precisely
equal to Γλµν in the RCS. Hence,

P λµ ν =−t
λ
A t
A
µν . (49)

As wementioned before, another difference with the flat
case (and hence another complication) is that the construc-
tion [∇µ, ] does not automatically produce multiplicative
operators. In any case, after moving the ∇ to the right, in

12 And the rule ∂xµ|0〉 = 0 still applies. However, as in the
purely gauge case, it is not practical to lose manifest covari-
ance. It is preferable to let the momentum integration to kill
non-multiplicative (and so non-covariant) contributions. See
Appendix B for an example.
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principle one will be able to manage to form multiplica-
tive combinations of nablas in some terms, plus terms in
which non-multiplicative combinations appear at the right.
The latter vanish upon momentum integration. Such in-
tegration will usually require one to put all pµ together
at the left (recall that Zµν and pλ do not commute) ex-
cept those in the form pµp

µ, appearing in propagators, etc.
Note that pµp

µ is not constant even in the RCS, because
pµ(x) = gµν(x)pν ; however, it is a c-number multiplicative
operator, so it commutes with all multiplicative operators
(pµp

µ fails to commute with non-multiplicative operators,
but those have been already been disposed of.) The key
point is that when only multiplicative operators appear,
the tensor P λµ ν and its covariant derivatives will be needed
only at the point x = x0. Upon momentum integration
these tensors will appear only through combinations which
are independent of the choice of the RCS, e.g.

∇µP
α
ν β−∇νP

α
µ β−P

α
µ λP

λ
ν β+P

α
ν λP

λ
µ β =R

α
µν β .

(50)

(For the momentum integration with x-dependent pµp
µ

see Appendix C.) In practice, the natural way to proceed
is to take as RCS the Riemann normal coordinates at
x= x0 from the beginning, since this choice provides mani-
festly covariant results for the tensor P λµ ν and its covariant
derivatives.
In Appendix B we illustrate all previous points for the

operator Q̂µν in (113) and the Riemann connection. The
matrix elements of this operator are computed to second
order in a derivative expansion using the (ordinary) sym-
bols method.

4 Covariant symbols in curved space-time

As we have just sketched in the previous section, one can
work with the ordinary symbols for pseudodifferential op-
erators in curved space-time along the same lines as for
the flat case, although things are, in general, more involved
in the curve case and covariance is recovered only after
momentum integration. In this section we introduce the co-
variant symbols in the presence of curvature. They are fully
covariant representations in terms of operators which are
multiplicative with respect to x.
We will need derivatives with respect to the momenta

pA. These are denoted as ∂
A:

∂A :=
∂

∂pA
, ∂µ := tµA ∂

A , (51)

The derivatives ∂µ are contravariant world vectors which
satisfy

[∂µ, pν ] := δ
µ
ν (52)

and, as a consequence of (48),

[∇µ, ∂
ν ] = P νµ λ∂

λ . (53)

We should extend now our previous notation. The most
general objects belong to the class

C(x,∇, Z,W, I, p, ∂) , (54)

where the new label ∂ indicates a possible dependence on
∂A.13 On the other hand the class, C(∂) denotes quantities
which are multiplicative with respect to pA.
In the curved case we introduce a preliminary definition

of the covariant symbol of an operator f̂ as

f := e−
1
2{∇µ,∂

µ}e−pαX
α
f̂ epβX

β
e
1
2{∇ν ,∂

ν} , f̂ ∈ C(p, ∂) .
(55)

This definition, as well as the general properties to be dis-
cussed below, holds actually for any connection on the
world indices, although eventually we will restrict our-
selves to the Riemannian connection for simplicity. As
shown subsequently, the map f̂ �→ f defines an
operator representation from C(x,∇, Z,W, I, p, ∂) into
C(x,∇, Z,W, I, p, ∂).
The definition depends on the choice of the (arbitrary)

RCS (in which the tensors pµ and ∂
µ have constant com-

ponents). Eventually we will take the RCS as the Riemann
normal coordinate system, thereby obtaining fully covari-
ant expressions for the covariant symbol. Because ∇µ and
∂µ do not commute (cf. (53)), one can extend the con-
struction eDµ∂

µ
corresponding to the flat case in several

different ways, among others, as e∇µ∂
µ
or e∂

µ∇µ , or even
as e

1
2 {∇µ,∂

µ}. All of them are valid. The two former choices
give slightly simpler formulas, but the latter has the virtue
of preserving the hermiticity properties of the original op-
erator, epX being unitary.
The use of the covariant symbol to compute the diag-

onal matrix element is fully analogous to its flat space-time
version

〈
x0|f̂ |x0

〉
=

1√
g(ξ)(x0)

∫
ddpA
(2π)d

〈
x0|e

−pX f̂epX |0
〉

=
1√
g(ξ)(x0)

∫
ddpA
(2π)d

×
〈
x0|e

− 12 {∇,∂}e−pX f̂epXe
1
2{∇,∂}|0

〉

=
1√
g(ξ)(x0)

∫
ddpA
(2π)d

〈
x0|f |0

〉
. (56)

In the second equality we have used

1

2
{∇µ, ∂

µ}=∇µ∂
µ−
1

2
P µµ λ∂

λ = ∂µ∇µ+∂
λ1

2
P µµ λ ,

(57)

and so the rules ∂A|0p〉= 〈0p|∂A = 0 can be exploited as in
the flat case (|0p〉 being the unit wavefunction in p space;
see footnote 7).

13 From now on we use ∂µ to denote ∂µp since the non-
covariant operator ∂xµ = ∂/∂x

µ will appear rarely.
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Because the covariant symbol is multiplicative with re-
spect to x (to be shown subsequently), one could, loosely
speaking, replace 〈x0|f |0〉with f(x0), interpreted as an op-
erator valued function at x0. In addition, in the absence
of derivatives, whether pµ is constant or not is no longer
relevant, and one can formally integrate over pµ instead of

pA, the Jacobian implying the replacement of g
(ξ)(x0) with

g(x0). We have

〈
x0|f̂ |x0

〉
=

1√
g(x0)

∫
ddpµ
(2π)d

f(x0) . (58)

In case of ambiguity the expression (56) should be used.
(See also Sect. 6 for further details.)
The properties of the covariant symbol are as follows.

i) It is a representation (an algebra homomorphism). This
follows from it being defined as a similarity transform-
ation. Actually, the definition in (55) is a similarity
transformation in an extended sense, since in general
the ∇µ in the formula will fall in different representa-
tions (different rank world tensors). In any case, when-
ever∇µ acts on a field, it selects, by convention, the ap-
propriate connections corresponding to the gauge and
world representation of the field, in such a way that the
homomorphism property holds, that is14

λX+µY �→ λX+µY , XY �→XY . (59)

ii) The covariant symbol is a multiplicative operator (with
respect to x), i.e., it falls in the class C(∇), provided the
original operator does not act in p space, or more pre-
cisely f̂ ∈ C(p) (it may contain ∂µ). This can be seen
as follows: the covariant symbol being multiplicative is
equivalent to

e−aXfeaX = f , ∀aA ∈ C(x,∇, Z,W, I, p, ∂) , (60)

where aX = aµX
µ, with aµ = t

A
µ aA, aA being an arbi-

trary constant c-number quantity. Then

e−aXfeaX

= e−aXe−
1
2{∇,∂}e−pX f̂epXe

1
2 {∇,∂}eaX

= e−
1
2{∇,∂}e−a∂e−aXe−pX f̂epXeaXea∂e

1
2 {∇,∂}

= e−
1
2{∇,∂}e−pXe−a∂ f̂ea∂epXe

1
2 {∇,∂}

= f, f̂ ∈ C(p) . (61)

In the second equality we use [∇µ, aX] = aµ to move
eaX to the left, generating a factor ea∂ . Since aµ∂

µ =
aA∂

A, this factor is a constant c-number and commutes
with everything except pA. In the last equality we use f̂
not containing pA.

iii) It is gauge and world covariant. This follows from using
a covariant coordinate system such as Riemann normal
coordinates at x0. Because the covariant symbol is mul-
tiplicative (all x derivatives have already been taken)
no quantities at points different from x0 are needed.

14 The symbols X and Y are used to represent arbitrary oper-
ators. In particular X is unrelated to the vector field Xµ.

iv) It preserves the hermiticity properties of the original
operator. Assuming hermiticity rules in x space of the
type

(λX+µY )† = λ∗X†+µ∗Y † , (XY )† = Y †X† ,

(xµ)† =+xµ , (∇µ)
† =−∇µ , (Zµν)

† =−Zµν ,

(R β
µν α)

† =+R β
µν α , (Tµν

λ)† =+Tµν
λ , (62)

etc., the hermitian character of an operator is shared by
its covariant symbol by adding the prescriptions

(pµ)
† =−pµ , (∂

µ)† =+∂µ (63)

(recall that we are using a purely imaginary momentum
variable throughout).

Of course, in practice the calculations implied in the
definition of the covariant symbol cannot be carried out
explicitly in full, a statement that also holds for the ma-

trix element 〈x|f̂ |x〉 itself. A suitable approach compatible
with its definition is to carry out a covariant derivative ex-
pansion of the symbol. In this counting each ∇µ counts as
first order, the torsion Tµν

λ is also first order, R β
µν α is sec-

ond order and so on, and pµ and ∂
µ count as zeroth order.

A systematic computation is presented in the next sec-
tion. By way of illustration we show here the covariant
symbol of M and ∇µ to second order in the derivative
expansion for a general connection and general reference
coordinate system. The result is expressed in terms of the
tensors Pµ1µ2···µn

α
β , which generalize that in (48) and (49):

[∇µ1 , [∇µ2 , · · · , [∇µn , pβ] · · ·]] =−Pµ1µ2···µn
α
βpα . (64)

This gives

M =M −Mµ∂
µ+
1

2
Mµν∂

µ∂ν

+
1

2
MµP

µ
ν λ∂

λ∂ν+O
(
∇3
)
,

∇µ = pµ+
1

2
P λα µ {pλ, ∂

α}−
1

4
{Zαµ, ∂

α}

−
1

4

(
P λ
αβ µ+P

σ
α βP

λ
σ µ

) {
pλ, ∂

α∂β
}
+O

(
∇3
)
.

(65)

We have used the property P αµ ν −P
α
ν µ = T

α
µν . As we can

see,∇µ is multiplicative in x space.
We can particularize these formulas to the case of nor-

mal coordinates at x0 as RCS, but with arbitrary con-
nection. Using the results of the next section (cf. (85)
and (88)), one obtains at x0

15

M =M −Mµ∂
µ+
1

2
Mµν∂

µ∂ν+O
(
∇3
)
, (66)

∇µ = pµ+
1

4
Tαµ

λ {pλ, ∂
α}−

1

4
{Zαµ, ∂

α}

+

(
1

12
R λ
µα β−

1

6
Tαβµ

λ+
1

24
Tµα

σTσβ
λ

){
pλ, ∂

α∂β
}

+O
(
∇3
)
.

15 We recall that only for multiplicative operators can one
meaningfully take x= x0.
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This result is manifestly covariant and all operators in-
volved are multiplicative with respect to x. The hermitian
properties are explicit as well. Also note that M and ∇µ
are still operators with respect to the gauge and world in-
dices. For instance, Zµν acts on world indices yielding the
curvature tensor. It is also noteworthy that these formulas
are formally independent of the domain of the operators in-
volved. In particular, depending on the internal and world
representation of the states, Zµν will act in a way or an-
other. E.g., on a state which is gauge singlet and world
scalar |φ〉

Zµν |φ〉= 0 , (67)

yet

Zµνpλ|φ〉 = [Zµν , pλ]|φ〉+pλZµν |φ〉=−R
σ

µν λ pσ|φ〉 .
(68)

When working with operators in C(Z), likeZµν , one should
be aware of seemingly paradoxical results. For example, for
the same state |φ〉 as before, and for Bλ a gauge singlet
field,

0 = 〈φ|ZµνBλ|φ〉=−〈φ|R
σ

µν λBσ|φ〉 (69)

(using 〈φ|Zµν =Zµν |φ〉= 0). Indeed the result is zero, since
the state R σ

µν λBσ|φ〉 is a rank three tensor and cannot

connect with the scalar state |φ〉. There is also no contra-
diction if one uses instead the operator ZµνB

µCν (again
Bµ, Cν gauge singlets) which is a scalar (and the previous
argument would not apply), since in this case the operator
[Zµν , B

µCν ] itself vanishes.
A preliminary definition of the covariant symbol was

given in (55). As final definition we take (55) but using as
RCS the Riemann normal coordinates associated to the
given connection (these coordinates are defined for any
connection), at each point x. That is, we use a different
RCS at each point. This is perfectly well defined, since the
operator is multiplicative and so equivalent to a function.
For the same reason, the algebra homomorphism property
is also not spoiled. There is an ambiguity in that normal
coordinates at x are unique modulo a rigid general linear
transformation. However, such an ambiguity does not re-
flect on the form of the covariant symbol when written in
terms of pµ and ∂

µ.

5 Computation of the covariant symbols

In this section we proceed to set up a systematic compu-
tation of the covariant symbols within a derivative expan-
sion. The expansion is taken to fourth order.

5.1 Arbitrary reference coordinate system
and arbitrary connection

Momentarily, we will work with an arbitrary RCS and ar-
bitrary connection. The quantities tAµ , t

µ
A, pA, pµ, ∂

A and

∂µ have already been defined and some of their properties
noted in previous sections. Here we only note the equiva-
lent definition

tAµ :=
[
∇µ, ξ

A
]
, (70)

where ξA is regarded as a c-number multiplicative op-
erator. Next we introduce the world scalar operator (in
C(W, I, p, ∂))

∇A :=
1

2
{∇µ, t

µ
A} , (71)

which has the property

∇µ =
1

2

{
∇A, t

A
µ

}
, (72)

as is readily shown. For this and similar manipulations the
following lemma is useful
Lemma: If the set of operators Ai satisfies

[Ai, Aj ] = [[B,Ai], Aj ] = 0 for all i, j , (73)

then

1

4
{{B,Ai}, Aj}=

1

2
{B,AiAj} for all i, j . (74)

Applying the lemma, (72) follows from the definition (71)

and the properties [tAµ , t
µ
B] = [[∇µ, t

A
ν ], t

α
B] = 0. A crucial

property of ∇A is that [∇A, X] is multiplicative provided
X is multiplicative, as is easily shown. As noted before, this
property is not enjoyed by ∇µ: for this case, the stronger
assumptionX ∈ C(∇, Z) is needed.16

In the RCS pµX
µ = pAξ

A holds, and also 12{∇µ, ∂
µ}

=∇A∂A (using (71) and the fact that ∂A commutes with
∇µ and t

µ
A). Therefore, we can reexpress the definition (55)

of the covariant symbol in the form

f = e−∂
A∇Ae−pBξ

B
f̂ epCξ

C
e∂
D∇D . (75)

The commutation properties of the quantities ξA, ∇A,
pA and ∂

A are as follows:

[
ξA, ξB

]
=
[
ξA, pB

]
=
[
ξA, ∂B

]
= [∇A, pB] =

[
∇A, ∂

B
]

= [pA, pB] =
[
∂A, ∂B

]
= 0 ,[

∇A, ξ
B
]
= δBA ,

[
∂A, pB

]
= δAB , [∇A,∇B] := ZAB .

(76)

We have introduced the operator ZAB. Recursively we find

ZA1···An := [∇A1 , ZA2···An ] ,[
ZA1···An , ξ

B
]
= [ZA1···An , , pB] =

[
ZA1···An , ∂

B
]
= 0 .
(77)

16 If φ is a c-number multiplicative operator and X is merely
multiplicative, [[∇A, X], φ] = [[∇A, φ],X] = 0 since [∇A, φ] is
again a c-number multiplicative operator; however, [∇µ, φ] is
not (it contains a world index).
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In particular, note that the operators ZA1···An are multi-
plicative since they commute with ξA.
The important observation is that the commutation re-

lations of ξA, ∇A, pA and ∂A are identical to those of the
flat case, as is also the definition of the covariant symbol
in terms of these operators, (75). This immediately implies
that the analogous of (21) hold

M =M −MS ∂
S+
1

2!
MSS (∂

S)2−
1

3!
MSSS (∂

S)3+ · · · ,

M ∈ C(∇, Z, p, ∂)

∇A = pA−
1

2!
ZSA ∂

S+
2

3!
ZSSA (∂

S)2−
3

4!
ZSSSA (∂

S)3

+ · · · . (78)

withMA = [∇A,M ],MAB = [∇A, [∇B ,M ]], and so on, and
S standing for contracted symmetrized indices of the type
A, B, . . . , (cf. Appendix A). (Actually, the equation forM
holds too forM ∈ C(∇, p, ∂).)
Unfortunately, this simple result is not sufficient. We

need∇µ instead of∇A, and quantities formed withM and
∇µ instead of∇A and ZA1,A2,... ,An .

5.2 Riemann normal coordinates
and arbitrary connection

Let us consider first M . Since M ∈ C(Z), M commutes
with tµA and t

A
µ and their derivatives. Hence, we find

MA =Mµ t
µ
A ,

MAB =Mµν t
µ
A t
ν
B+Mν t

ν
µB t

µ
A , (79)

and so on. As before, we use the notation

tλµ1...µnA =
[
∇µ1 , t

λ
µ2...µnA

]
, tAµ1...µnλ =

[
∇µ1 , t

A
µ2...µnλ

]
.

(80)

The derivatives of the type tλµ1...µnA can be expressed in

terms of tλB and t
B
µ1...µnλ

using the relations (35), e.g.

tνµA =−t
ν
B t
λ
A t
B
µλ . (81)

This gives for the term with two derivatives inM

MSS =
(
Mss+Mλ t

A
ss t
λ
A

)
tsS t

s
S . (82)

To proceed further we make a choice of RCS (for given
base point x0), namely, we choose the usual Riemann nor-
mal coordinates at x0. These are the coordinates such that
the curves ξA(t) = tvA are geodesics passing through x0,
the geodesics being the straightest lines with respect to
the given connection. A practical equivalent definition is to
take the coordinates ξA so that

ξA(x0) = 0 , tAss...s︸︷︷︸
n

∣∣∣
x0
= 0 for n≥ 2 . (83)

(This means that, for n ≥ 2, the completely symmetrized
component of tAµ1...µn vanishes.) In this form the normal

coordinates system was used in a similar context in [53].
Given x0 and t

A
µ at x0, the normal coordinates are locally

unique, since the tAµ1...µnλ at x0 can be obtained recursively
in terms of the curvature and torsion tensors and their
derivatives, using the definition above. For instance,

tAµν =∇µ∇νξ
A = tAνµ−T

λ
µν t

A
λ , (84)

and using (83) (i.e., tAµν is purely antisymmetric at x0)

tAµν =−
1

2
T λ
µν t

A
λ , at x0 . (85)

Likewise, starting from

tAµνα+five permutations = 0 , at x0 , (86)

and using the identity

tAαβγ = t
A
βαγ−R

λ
αβ γ t

A
λ −T

λ
αβ t

A
λγ (87)

(plus derivatives of (84)) to bring the five permutations
to coincide with the first ordering, gives tAµνα at x0. This
yields

tAαβγ =

(
−
1

3
Rαβ

λ
γ+
1

3
Rγα

λ
β−
1

2
Tαβγ

λ

+
1

6
Tβγα

λ−
1

6
Tγαβ

λ−
1

4
Tβγ

σTσα
λ

−
1

12
Tγα

σTσβ
λ+
1

12
Tαβ

σTσγ
λ

)
tAλ , at x0 .

(88)

The same technique applies for computing any higher
derivative of ξA at x0.
Let us come back now to the evaluation ofMSS. Clearly

for normal coordinates (but arbitrary connection), (82) re-
duces to MSS =Msst

s
S t
s
S at the origin. In fact a similar

reduction happens to all orders, that is,17

MS...S =Ms...s t
s
S · · · t

s
S , at x0 . (89)

In summary, the covariant symbol of M , to all orders
in the derivative expansion, is given by an expression fully
analogous to that of the purely gauge case, namely,

M =M −Ms ∂
s+
1

2!
Mss (∂

s)2−
1

3!
Msss (∂

s)3+ · · · ,

M ∈ C(∇, Z, p, ∂) , (90)

17 This can be seen recursively as follows. MS...S contains
a first termMs...s t

s
S · · · t

s
S plus other terms containing a factor

tAs...s (with two or more s). Now, in the present case (namely,
M ∈ C(∇, Z, p, ∂) but not, e.g., for Zµν), each new ∇S is
equivalent to tsS∇s. If ∇s acts on a factor t

s
S in the first term,

the formula
tλsS =−t

λ
A t
s
S t
A
ss

applies and this vanishes at x0. Likewise, if∇s acts on the other
terms, there will always remain a tAs...s factor with two or more
s. So the only surviving piece at x0 is that obtained by ∇s
acting on Ms...s. This yields (89). See footnote 20 for an alter-
native proof.
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where s are symmetrized world indices. Note that, un-
like (78), this expression does not apply for arbitrary oper-
ators in C(∇, p, ∂) such as Zµν .
Next, we need to introduce world-index counterparts

of ZA1...An . As discussed in Sect. 3, the objects [∇µ1 ,
[· · · ,∇µn ] · · ·] are not in general multiplicative operators.
Instead, we recursively define

Zµν = [∇µ,∇ν ]+
1

2

{
∇λ, Tµν

λ
}
,

Zαµν = [∇α, Zµν ]−
1

2

{
∇λ, Rµν

λ
α

}
,

...

Zαµ1···µn = [∇α, Zµ1···µn ]−
1

2

{
∇λ, Rµ1···µn

λ
α

}
, (91)

(withR α
σµν β :=∇σR

α
µν β , etc.). These operators are multi-

plicative, and indeed for a gauge singlet V σ they satisfy

[Zµν , V
σ] =Rµν

σ
λ V

λ ,

[Zαµν , V
σ] =Rαµν

σ
λ V

λ ,

... V ∈ C(∇, Z, I),

[Zµ1···µn , V
σ] =Rµ1···µn

σ
λ V

λ (92)

(and of course a similar action on each world index in the
case of tensors). In addition they are antihermitian. In
terms of these, one obtains the following relations at x0:

18

ZAB =
1

2

{
tαA t

β
B, Zαβ

}
(all at x0) ,

ZABC =
1

2

{
tαA t

β
B t
µ
C , Zαβµ+

1

4

{
Zβλ, Tαµ

λ
}

−
1

4

{
Zµλ, Tαβ

λ
}}
. (93)

We can proceed now to the evaluation of∇µ. To do this
we use the relation

∇µ =
1

2

{
∇A, t

A
µ

}
, (94)

which follows from (72) and the homomorphism property

of the covariant symbols. The quantity t
A
µ is easily obtained

18 Naturally, instead of (91), we could have adopted a defin-
ition of the type

Z′µ1···µn =
1

2

{
tA1µ1 · · · t

An
µn , ZA1···An

}
,

which has all the good properties, and in particular

ZA1···An =
1

2

{
t
µ1
A1
· · · tµnAn , Z

′
µ1···µn

}
.

However, the relations similar to (92) become more compli-
cated. The definition adopted corresponds to Zαµ1...µn =
1
2{t
A
α , [∇A, Zµ1...µn ]}.

to second order usingM = tAµ in (90) and the formulas (85)
and (88):

t
A
µ = t

A
λ

[
δλµ+

1

2
Tsµ

λ ∂s

+

(
1

6
R λ
µs s−

1

3
Tssµ

λ+
1

12
Tsµ

σTsσ
λ

)
(∂s)2

+O
(
∇3
) ]
. (95)

On the other hand∇A is obtained to second order from (78)
and the first equation in (93). In this way we reproduce the
result for∇µ in (66).

5.3 Riemannian connection results

From now on we restrict ourselves to the Riemannian con-
nection, since the absence of torsion considerably simplifies
the expressions.
For the Riemannian connection one finds at x0

tAµν = 0 ,

tAαµν =
1

3

(
Rλµνα+R

λ
νµα

)
tAλ , at x0 . (96)

Some higher order results needed to obtain t
A
µ are as

follows:

tAsµ = 0 ,

tAssµ =
1

3
Rµs

λ
s t
A
λ ,

tAsssµ =
1

2
Rsµs

λ
s t
A
λ , (97)

tAssssµ =

[
3

5
Rssµs

λ
s+
7

15
Rµs

σ
sRσs

λ
s

]
tAλ , all at x0 .

With (90) this gives

t
A
µ = t

A
λ

[
δλµ+

1

6
Rµs

λ
s (∂

s)2−
1

12
Rsµs

λ
s (∂

s)3

+

(
1

40
Rssµs

λ
s+

7

360
Rµs

σ
sRσs

λ
s

)
(∂s)4+O(∇5)

]
.

(98)

In addition, for the Riemannian connection one has the
Bianchi identities

0 = Zα1···αnµ1µ2µ3 +Zα1···αnµ2µ3µ1 +Zα1···αnµ3µ1µ2 ,
(99)

and the following relations (which hold at x0):

ZAB =
1

2

{
tαA t

β
B , Zαβ

}
,

ZABC =
1

2

{
tαA t

β
B t
µ
C , Zαβµ

}
, (all at x0)

(100)
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ZABCD =
1

2

{
tαA t

β
B t
µ
C t
ν
D, Zαβµν +

1

6

{
Zλµ, R

λ
βνα+R

λ
νβα

}

−
1

6

{
Zλν , R

λ
βµα+R

λ
µβα

}}
.

Combining all the previous relations and (94) we can
now write down the expression for∇µ, which we have com-
puted to four derivatives

∇µ =∇µ
(0)+∇µ

(1)+∇µ
(2)+∇µ

(3)+∇µ
(4)+O(∇5) .

(101)

The result is as follows:

∇µ
(0) = pµ ,

∇µ
(1) = 0 ,

∇µ
(2) =−

1

4
{Zsµ, ∂

s}+
1

12

{
[Zsµ, ps], (∂

s)2
}
,

∇µ
(3) =

1

6

{
Zssµ, (∂

s)2
}
−
1

24

{
[Zssµ, ps], (∂

s)3
}
,

∇µ
(4) =−

1

16

{
Zsssµ, (∂

s)3
}
+
1

80

{
[Zsssµ, ps], (∂

s)4
}

+
1

48

{
Zsλ, [Zsµ, ∂

λ](∂s)2
}

−
7

720

{
[Zsλ, ps], [Zsµ, ∂

λ](∂s)3
}
. (102)

The result has been written in a manifestly antihermitian
form. Although the Riemann tensor does not appear, these
formulas hold only for the Riemann connection. The for-
mulas have been verified in various ways. In particular, for
M ∈ C(∇, Z, p, ∂) one can apply the expansion (90) to M
and also to Mµ = [∇µ,M ] since it falls in the same class.
Then one can check that the formulas preserve the homo-
morphism property, in the form

Mµ =
[
∇µ,M

]
. (103)

Another check comes from computing the covariant
symbol of Zµν (for which (90) does not apply). A direct
computation to four derivatives gives

Zµν = Zµν−
1

2
{Zsµν , ∂

s}+
1

4

{
Zssµν , (∂

s)2
}
+O

(
∇5
)
.

(104)

As we have verified, this expression satisfies

Zµν =
[
∇µ,∇ν

]
. (105)

These checks would serve to determine some of the coeffi-
cients in the expression of ∇µ, but not all.
Another operator of great interest in applications is the

Laplacian,

∆= gµν∇µ∇ν . (106)

Since [∇λ, gµν ] = 0, an application of (90) gives

gµν = gµν . (107)

(Also clear from the definition (55) since gµν commutes
with all operators there.) Therefore we can use our previ-
ous results to obtain the covariant symbol of the Laplacian,
by means of

∆= gµν∇µ∇ν . (108)

This yields an expansion of∆ to four derivatives,

∆=∆(0)+∆(1)+∆(2)+∆(3)+∆(4)+O(∇5) ,
(109)

with

∆(0) = pµp
µ ,

∆(1) = 0 ,

∆(2) =−
1

2
{Zsµ, p

µ∂s}+
1

3
[[Zsµ, p

µ] , ∂s]

+
1

6

{
[Zsµ, ps]p

µ, (∂s)2
}
,

∆(3) =
1

6

{
Zssµ,

{
pµ, (∂s)2

}}
−
2

3

[
Zµsµ, ∂

s
]

−
1

12

{
[Zssµ, ps]p

µ, (∂s)3
}
,

∆(4) =−
1

16

{
Zsssµ,

{
pµ, (∂s)3

}}

+
1

40

{
[Zsssµ, ps]p

µ, (∂s)4
}

−
1

16

{
Zsµ,

{
[Z µs , ps] , (∂

s)3
}}
+
1

8

{
ZsµZ

µ
s , (∂

s)2
}

+
1

30

{
[Zsµ, ps][Z

µ
s , ps], (∂

s)4
}

+
1

60
[Zµα, ∂

α]
[
Zµβ , ∂

β
]

+
2

45

[
Zµα, ∂

β
]
[Zµβ , ∂

α]+
2

45

[
Zµα, ∂

β
] [
Z αµ , ∂β

]

+
1

3
[Zsµν

µ, ∂ν ] ∂s+
1

60
[Zµsν

µ, ∂ν ] ∂s

−
1

40

[
Z µµ νs, ∂

ν
]
∂s . (110)

Once again the result has been written in an explicit her-
mitian form. It is noteworthy that in all terms the metric
has been used once to raise one index (as in the Laplacian
itself), except in the second term with coefficient 2/45 in
∆(4), in which the metric is used thrice. This is because
specific properties of the Riemann connection have been
used in simplifying the formula. (The metric has to appear
an odd number of times since the Laplacian is odd under
gµν →−gµν whereas the connection itself is even.)
The previous formulas can also be brought to a more

systematic or “standard” form. We define such a standard
form by the requirement that the quantities R, Z, p and
∂ appear in the expressions in this very order (i.e., the ∂
occupy the rightmost position, then the p, and so on.) Of
course, in standard form hermiticity is no longer manifest.
For the covariant symbol of the covariant derivative, we
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obtain

∇µ
(2) =

1

2
Zµs∂

s+
1

6
Rµs ∂

s+
1

6
Rµs

α
s pα(∂

s)2 ,

∇µ
(3) =

1

3
Zssµ(∂

s)2+
1

8
Rαµs

α
s(∂

s)2−
1

8
Rssµ(∂

s)2

−
1

12
Rsµs

α
spα(∂

s)3 ,

∇µ
(4) =−

1

8
Zsssµ(∂

s)3+
1

24
Rµs

α
sZαs(∂

s)3

+
1

20
Rsssµ(∂

s)3−
1

10
Rsαµs

α
s(∂

s)3

−
13

720
RsαRµs

α
s(∂
s)3+

1

90
Rαµ

β
sRβs

α
s(∂
s)3

+
1

40
Rssµs

α
s pα(∂

s)4+
7

360
Rµs

α
sRαs

β
s pβ(∂

s)4 .

(111)

In the same way, for the covariant symbol of the Laplacian,

∆(2) =
1

6
R+Zαs pα∂

s−
1

3
Rαs pα∂

s+
1

3
Rαs

β
s pαpβ(∂

s)2 ,

∆(3) =−
1

3
Z αα s∂

s−
1

4
Rs ∂

s

+
2

3
Zssα p

α(∂s)2+
1

6
Rssα p

α(∂s)2

+
1

6
Rααs

β
s pβ(∂

s)2−
1

6
R α βs s s pαpβ(∂

s)3 ,

∆(4) =
3

20
Rss(∂

s)2−
1

10
Rαβαs

β
s(∂
s)2+

1

4
Z αs αs(∂

s)2

+
29

120
RαsRαs(∂

s)2+
1

4
Rαs Zαs(∂

s)2

−
31

120
RαβRαs

β
s(∂

s)2−
1

60
R αβs γ Rsα

γ
β(∂

s)2

+
1

4
Zαs Zαs(∂

s)2−
1

20
Rsssα p

α(∂s)3

−
3

20
Rs
α
αs
β
s pβ(∂

s)3−
1

4
Zsssα p

α(∂s)3

+
13

120
RαsRαs

β
s pβ(∂

s)3−
1

15
Rαβs sR

γ
sα β pγ(∂

s)3

+
1

4
Rαβs s Zαs pβ(∂

s)3+
1

20
R α β
ss s s pαpβ(∂

s)4

+
1

15
Rαγs sRγs

β
s pαpβ(∂

s)4 . (112)

In this alternative form the metric appears exactly once in
each term.
Equations (90), (111) and (112) are the main result of

this work. They extend the results of Pletnev and Banin
to curved space-time and can be used immediately to com-
pute diagonal matrix elements by means of (58). Obvious
applications are the computation of the heat kernel in the
non-minimal case within a strict covariant derivative ex-
pansion. Such a calculation has been carried out, both for
traced and untraced coefficients, and it will be presented
elsewhere. Another interesting application is to the compu-
tation of the effective action of fermions with chiral gauge
and curvature connections. This type of calculation has
been done in the flat space-time case within a covariant
derivative expansion for both the normal and abnormal

parity components of the effective action in [48, 50]. So it
would seem natural to extend such results to the case of
curved space-time.

6 Sample computation
using covariant symbols

For the purposes of illustration, in this section we apply
the method of covariant symbols to the computation of
the diagonal matrix element of a concrete operator. In Ap-
pendix B we carry out the analogous computation using
the method of symbols. As operator we take

Q̂µν =∇µ
1

m2−∆
∇ν , (113)

where m is a positive constant c-number. The operator
is defined on a d-dimensional Euclidean space-time. d is
kept arbitrary so that ultraviolet convergence of the matrix
element is assured in the sense of dimensional regulariza-
tion. Note that, through a standard functional transform,
the operator can be related to

Ĥµν =∇µe
τ∆∇ν (114)

which is well behaved in the ultraviolet (for positive τ).
The covariant derivative ∇µ includes gauge and world

connections, the latter being the Riemannian connection.
We do not specify the gauge connection and also the space
of states is kept unspecified. In particular, the states may
have any tensorial structure. Also the operator itself is not
a world scalar.
We have chosen Qµν instead of (m2−∆)−1 or eτ∆ in

order to illustrate the method with an operator that can-
not be obtained as a variation of the heat kernel, for which
many results and alternative procedures are available.
Specifically, we will compute

Qµν(x) = 〈x|Q̂µν |x〉 (115)

through second derivatives, i.e., neglecting terms with four
or more covariant derivatives. Because m2 is a constant,
in this case the derivative expansion is equivalent to an
inverse mass expansion. The terms neglected introduce
a relative errorO(1/m4).
Using the relation (56), we can write

Qµν(x) =
〈
Qµν

〉
, (116)

where Qµν is the covariant symbol of Q̂µν , and we have
introduced the notation (X representing an arbitrary mul-
tiplicative quantity here)

〈X〉 :=
1√
g(ξ)(x)

∫
ddpA
(2π)d

〈x|X|0〉 , X ∈ C(∇) .

(117)

Using the homomorphism property of the covariant symbol
implies

Qµν(x) =

〈
∇µ

1

m2−∆
∇ν

〉
. (118)
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Next we proceed to substitute the derivative expansion
expressions of∇µ and∆. A simplification occurs by noting
that ∇λ differs from pλ only by terms with ∂σ. As can be
seen in (111),∇µ(n) for n≥ 1 has ∂σ at the right, or also at
the left since these quantities are antihermitian. Thus

〈
X∇λ

〉
= 〈Xpλ〉 ,

〈
∇λX

〉
= 〈pλX〉 . (119)

This gives

Qµν(x) =

〈
pµ

[
m2−pλp

λ−∆(2)
]−1
pν

〉
+O

(
∇4
)

=

〈
pµ

[
N +N

(
1

6
R+

(
Zαβ−

1

3
Rαβ

)
pα∂β

+
1

3
Rαλβσ p

αpβ∂λ∂σ
)
N

]
pν

〉
+O

(
∇4
)
,

(120)

where

N :=
1

m2+p2
, p2 :=−pλp

λ ≥ 0 . (121)

The momentum derivatives are easily computed using the
identities

[∂α, N ] = 2pαN2〈
X∂βNpν

〉
=
〈
X
(
2pβpνN

2+ δβνN
)〉

〈
X∂α∂βNpν

〉
=
〈
X
(
2
(
δαν p

β+ δβν p
α+ gαβpν

)
N2

+8pαpβpνN
3
)〉
. (122)

(Of course, one can choose to apply ∂µ to the left, by
parts.) In addition we group together the p and theN using

pµZαβ = Zαβ pµ+Rαβ
λ
µ pλ , [Zµν , N ] = 0 . (123)

This produces19

Qµν(x) =

〈
pµpνN +

1

6
R pµpνN

2

+

(
Zαν −

1

3
Rαν

)
pαpµN

2

+Rα βµ ν pαpβN
2

〉
+O

(
∇4
)
. (124)

The momentum integrals can already be taken. In prin-
ciple, for an expression 〈X〉 (X being a multiplicative
operator) the proper procedure would be to take matrix
elements 〈x|X|0〉, and then proceed to carry out the in-
tegration over the d constants pA. In the present case,
all the p-dependence is contained in blocks of the type
(pµ1 · · · pµ2rN

n), where all quantities commute among
them (all p have been put together in each term). Thus

19 Terms with four p cancel among them. It is not obvious to
me whether this is just accidental or to be expected a priori.

in this case we can equivalently carry out the momentum
integration in each block using

〈pµ1 · · · pµ2rN
n〉
p
:=

1√
g(ξ)(x)

∫
ddpA
(2π)d

pµ1 · · · pµ2rN
n

=
1√
g(x)

∫
ddpµ
(2π)d

pµ1 · · · pµ2rN
n .

(125)

In addition, we can introduce the multiplicative operator
Q̂′µν such that

Qµν(x) =
〈
x|Q̂′µν |0

〉
. (126)

Using these definitions, we obtain

Q̂′µν = 〈pµpνN〉p+
1

6
R
〈
pµpνN

2
〉
p

+

(
Zαν −

1

3
Rαν

)〈
pαpµN

2
〉
p
+Rα βµ ν

〈
pαpβN

2
〉
p

+O
(
∇4
)
. (127)

As shown in Appendix C the momentum integrals can
be computed to yield formally the same result as in flat
space-time, except that the flat metric is replaced by the
metric tensor at x. It is often convenient to apply first an-
gular averages, namely,

〈
pµpνf(p

2)
〉
p
=

〈
−
p2

d
gµνf

(
p2
)〉
p

; (128)

or more generally

pµ1 · · · pµ2n �→
(−p2)n

d(d+2) · · · (d+2n−2)
gµ1···µ2n , (129)

where gµ1···µ2n is the completely symmetric sum of n-
products of metrics ((2n−1)!! terms).
The angular average yields

Q̂′µν =−
1

d
gµν

〈
p2N

〉
p

−
1

d

(
1

6
gµνR+

2

3
Rµν +Zµν

)〈
p2N2

〉
p
+O

(
∇4
)
.

(130)

Finally, the standard formulas of dimensional integration
apply,

〈
(p2)rNn

〉
p
=
(m2)d/2+r−n

(4π)d/2
Γ (d/2+ r)

Γ (d/2)

Γ (n−d/2− r)

Γ (n)
,

(131)

and so

Q̂′µν =
md

(4π)d/2
Γ (1−d/2)

×

[
1

d
gµν −

1

m2

(
1

12
gµνR+

1

3
Rµν +

1

2
Zµν

)]

+O
(
∇4
)
. (132)
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This result is manifestly covariant, and formally indepen-
dent of the domain and range of Q̂µν , as Q̂µν itself in (113).
To fully fix the matrix element it remains to specify the
internal and world structures of the states 〈x, a, w| and
|0, b, w′〉.

7 Concluding remarks

From the computational point of view, our main result
is contained in (90) and (66) (for a general connection),
and (111) and (112) for the Riemannian connection. With
such building blocks, and with the help of the represen-
tation (homomorphism) property, one can construct the
covariant symbol of other operators f(∇,M). This has
been illustrated with an explicit computation in Sect. 6. It
clearly would be interesting to extend the present results to
higher orders and to include torsion more systematically.
See e.g. [54, 55] for relations between torsion and chirality.
For references motivating the study of quantum field the-
ory in curved space-time with torsion see [56–58].
Regarding the concrete expressions obtained, we ob-

serve that they are rather natural, involving local covariant
operators, similar to the heat kernel coefficients.20 How-
ever, we warn that the presence of Zµν (or other operators
in C(Z)) is unusual as compared to other treatments. In
those treatments [16], if one needs to apply, say, the heat
kernel operator on a state with world indices (e.g., the
gluon field, Gµ), a first step is to transform the world in-
dex into an internal one using a tetrad field, Ga = e

µ
a Gµ.

The new field Ga is a coordinate scalar so one can apply
the heat kernel expressions for scalars. The world structure
of the field is now in the internal sector through the cor-
responding connection for the tetrad index. In this way the
result depends on an Fµν(x) which includes the strength
tensor from the original gauge structure plus that of the
new internal structure. The idea is to assimilate coordi-
nate covariance as much as possible to the gauge case,
where Fµν(x) is a matrix-valued function. Our own repre-
sentation is different since the expressions obtained in the
present work hold regardless of the world tensor structure
of the states, without transforming them into scalars. This
works thanks to the action of Zµ1...µn which are not just
matrix-valued fields: from the gauge point of view, while
Fµν is the same matrix-valued function in, e.g. FµνBα| 〉
and in BαFµν | 〉, Zµν would be a “different” matrix-valued
function in each case, since it acts on any world index at
its right. Of course, nothing prevents us to reduce our for-
mulas to reproduce the abovementioned more usual point

20 It is noteworthy that actually not all such operators are
present and thus selection rules are at work. For instance, terms
of the form MssRss(∂

s)4 do not appear in M . Technically,
the reason for the non-existence of such terms is that M does
not involve pµ (cf. (78)). Then, using only ∂

µ and derivatives
of M , the Z, the Riemann tensor and the torsion, there is no
way to contract all indices. The presence of pµ would permit
[∂ν , pµ] = δ

ν
µ, and hence the Ricci tensor to appear. This is an

alternative proof of (90).

of view. To do so, once the state has been transformed into
a world scalar, one only needs to move all Zµν to the right
using commutators, and then set the world part of Zµν to
zero (since it is acting on a world scalar). Nevertheless, in
our view, it is more natural to work with the original fields
rather than transforming them into scalars by means of an
ad hoc new internal structure.
With respect to applications of the method exposed,

it naturally applies to one-loop computations in curved
space-time. A first application would be to compute the
heat kernel, not using the standard Seeley–DeWitt ex-
pansion, which orders operators by their dimension, but
the covariant derivative expansion. Explicit calculations
along this line exist only for the minimal case (i.e., Klein–
Gordon theories with a trivial gauge sector) [27, 53]. The
non-minimal, but flat space-time, calculation of [19] can
be extended to the curved case, and results for traced and
untraced coefficients will be presented elsewhere. Further
applications refer to the effective action of Klein–Gordon
and Dirac theories in curved space-time. Again results ob-
tained by the covariant symbol method exist for these two
cases, for flat space-time and quite general non-Abelian
backgrounds [48, 50]. These computations correctly repro-
duce the Wess–Zumino–Witten action [59, 60] as well as
the associated anomalies in the abnormal parity sector of
the fermion case. For Dirac fermions in curved space-time
there are many interesting results concerning chiral, co-
ordinate and frame anomalies [51, 61–64], but results are
much more scarce for the effective action itself. We expect
that all the anomalies will be obtained as a byproduct of
the effective action computation.
Mathematically, the covariant symbol is a quite inter-

esting and challenging quantity, since it implies the con-
struction of a true representation of pseudodifferential op-
erators in terms of purely multiplicative operators (in the
original x space). It would be very nice to have any rigor-
ous result concerning such quantities and in particular to
obtain the exact covariant symbol in particular cases. The
fact that the covariant symbol can be computed systemati-
cally within concrete (presumably asymptotic) expansions
suggests that this quantity can be given a rigorous and
proper mathematical definition.

Acknowledgements. This work was supported by DGI, FEDER,
UE and Junta de Andalućıa funds (FIS2005-00810, HPRN-CT-

2002-00311, FQM225).

Appendix A: Notational conventions

In this appendix we summarize the non-standard nota-
tional conventions used in the main text.

Derivative convention. For a quantity XI having an
ordered set of world indices I, XµI denotes its covariant

derivative [∇µ, XI ]. For example, R α
σµν β := [∇σ, R

α
µν β ].

Exceptions are Zµ1µ2···µn , defined in (91) so that they are
multiplicative operators with respect to x, and the tensors
Pµ1µ2···µn

α
β defined in (64).
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Note that on states (wavefunctions) the action of
∇µ is expressed as ∇µψ while on operators it acts ad-
jointly, [∇µ, X]. Occasionally will write simply ∇µX if
X ∈ C(∇, Z, I), e.g. ∇σR α

µν β or∇µt
A
ν .

Momentum convention. The momentum pµ is
purely imaginary, pµ = ikµ (kµ real). However, d

dp is just
the standard real measure dnk and p2 := −gµνpµpν =
gµνkµkν the standard real norm (positive for Euclidean
signature).

s index convention. s indicates a symmetrized world
index. So we will use the notation

Asµss(∂
s)3 (A.1)

to mean

Aαµβγ∂
α∂β∂γ . (A.2)

There is no ambiguity since the ∂µ commute.21 In Sect. 5
we use a similar convention for the index S, which refers to
the labels of the type A, B, etc.

Riemann tensor convention. For a gauge singlet
and world vector wavefunction

[∇µ,∇ν ]V
λ =+R λ

µν σV
σ−T σ

µν ∇σV
λ ; (A.3)

the Ricci tensor and the scalar curvature are

Rµν :=R
λ

λµ ν , R := g
µνRµν . (A.4)

Appendix B: Computation of Qµν(x)
using the method of symbols

In this appendix we will illustrate the method of (ordinary)
symbols with the same operator Q̂µν considered in Sect. 6.
(We will use definitions introduced in that section.) Equa-
tion (42) implies

Qµν(x) =
1√
g(ξ)(x)

∫
ddpA
(2π)d

〈x|Qµν(∇+p,M)|0〉

=

〈
(∇µ+pµ)

1

m2− (∇α+pα)(∇α+pα)

× (∇ν +pν)

〉
. (B.1)

Carrying out an expansion in powers of∇µ through sec-
ond order yields

Qµν(x) =
〈
pµpνN +pµN

(
∆+

{
∇α, p

α}N{∇β, p
β
})
Npν

+pµN {∇α, p
α}N∇ν +∇µN {∇α, p

α}Npν

+∇µN∇ν
〉
+O

(
∇4
)
. (B.2)

21 Note that in an expression like ∂αZαβµ∂
β the indices α

and β are not symmetrized (Z and ∂ do not commute). The
expression differs from ∂βZαβµ∂

α, and hence it would not be

faithfully represented by ∂sZssµ∂
s.

The next step is to move all∇ to (say) the right (it is essen-
tial not to split the covariant derivative into non-covariant
pieces). The move is obtained by applying the rules

[∇µ, pα1···αn ] = pµα1···αn , [∇µ, N ] = 2p
αpµαN

2 , (B.3)

this gives

Qµν(x) =
〈
pµpνN +pµp

α
ανN

2+pνp
α
µ αN

2+2pαpµανN
2

+2pµpνp
αp βα βN

3+2pµpνp
αpββαN

3

+4pµp
αpβpαβνN

3+4pνp
αpβpµαβN

3

+8pµpνp
αpβpγpαβγN

4+N∇µ∇ν

+pµpνN
2∇α∇α+2pµp

αN2∇α∇ν

+2pνp
αN2∇µ∇α+4pµpνp

αpβN3∇α∇β

+ 39 further terms
〉
+O

(
∇4
)
. (B.4)

The “39 further terms” not made explicit contain a factor
pαβ. For the Riemannian connection they vanish by choos-
ing normal coordinates centered at x. (Of course, the rule
pαβ = 0 can only be applied after all covariant derivatives
have been put aside.)
The derivatives of pµ are easily obtained recalling that

pα = t
A
αpA; thus

pµ1···µn = t
A
µ1···µn

pA = t
A
µ1···µn

tλA pλ . (B.5)

In particular, using (96) one obtains

pαµν =
1

3

(
Rλµνα+R

λ
νµα

)
pλ . (B.6)

Substitution in the expression above gives

Qµν(x) =
〈
pµpνN −

2

3
Rµα pνp

αN2+
1

3
Rνα pµp

αN2

+
2

3
Rµανβ p

αpβN2−
2

3
Rαβ pµpνp

αpβN3

+N∇µ∇ν +pµpνN
2∇α∇α+2pµp

αN2∇α∇ν

+2pνp
αN2∇µ∇α+4pµpνp

αpβN3∇α∇β
〉

+O
(
∇4
)
. (B.7)

Prior to momentum integration, this expression is not
manifestly covariant since there are still ∇ not derivating
anything nor in the form of Zµ1···µn , that is, the expression
in brackets is not a multiplicative operator. It is often not
necessary to completely carry out the momentum integra-
tion to achieve manifest gauge covariance [17, 65]. Taking
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an angular average, as explained in Sect. 6, gives

Qµν(x) =
〈
−
p2

d
gµνN −

1

3

p2

d
RµνN

2−
2

3

(p2)2

d(d+2)
gµνRN

3

−
4

3

(p2)2

d(d+2)
RµνN

3+N∇µ∇ν

−4
p2

d
N2∇µ∇ν −

p2

d
gµνN

2∇α∇α

+4
(p2)2

d(d+2)
N3∇µ∇ν +4

(p2)2

d(d+2)
N3∇ν∇µ

+4
(p2)2

d(d+2)
gµνN

3∇α∇α
〉
+O

(
∇4
)
. (B.8)

Using now the recurrence

〈
(p2)rNn

〉
p
=
d/2+ r−1

n−1

〈
(p2)r−1Nn−1

〉
p
, n > 1

(B.9)

to eliminate higher powers of N , gives already a covariant
result:

Qµν(x) =
〈
−
p2

d
gµνN −

1

12
gµνRN −

1

3
RµνN

−
1

2
N [∇µ,∇ν ]

〉
+O

(
∇4
)
. (B.10)

Upon momentum integration this coincides with (132) ob-
tained in Sect. 6 using the method of covariant symbols.

Appendix C: Momentum integrals

Here we want to show that momentum integrals like (125)
give formally the same result as in flat space-time. Rather
than considering the most general case, it will be sufficient
to treat a sample integral. We consider

Iµν =
1
√
g

∫
ddk

(2π)d
kµkνf

(
k2
)
. (C.1)

Here kµ are real (pµ := ikµ, d
dp := ddk; cf. Appendix A)

and k2 = gαβkαkβ .
Introducing an orthonormal tetrad, eaα, as well as a new

momentum variable, qa,

eαa e
a
β = δ

α
β , gαβ = ηabe

a
αe
b
β , kα = e

a
αqa , (C.2)

we obtain

g = |det gαβ|= |det e
a
α|
2 , ddk = |det eaµ|d

dq =
√
g ddq ,

k2 = ηabqa qb = q
2 , (C.3)

so

Iµν = Iab e
a
µe
b
ν , (C.4)

with

Iab =

∫
ddq

(2π)d
qa qbf(q

2) = ηabI , (C.5)

and finally

Iµν = gµνI , (C.6)

with I computed as in flat space-time

I =

∫
ddq

(2π)d
1

d
q2f(q2) . (C.7)
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